Розділи сайту Всі
#quantum
Группа исследователей из Национальной лаборатории Ок-Ридж, Стэнфордского университета и университета Пурду, разработала структуру и продемонстрировала функционирование новой полностью квантовой локальной сети (Quantum Local Area Network, QLAN). Эта сеть позволяет корректировать ошибки в режиме реального времени и обмениваться информацией между узлами, находящимися в разных местах, при помощи пар запутанных фотонов, циркулирующих по оптоволокну.

Новая квантовая сеть является демонстрацией технологий, при помощи которых в будущем будут соединяться квантовые компьютеры и различные квантовые датчики. Эти же самые технологии, только следующих поколений, могут лечь в основу квантового варианта Интернета.

Отметим, что некоторые квантовые технологии уже используются в современных телекоммуникациях, здесь можно особо выделить, как самую распространенную, технологию квантового распределения ключей шифрования. Но такие технологии только лишь повышают безопасность традиционных технологий передачи данных и они не позволяют перемещать и устанавливать квантовую запутанность между узлами сети.
Ученые усиленно работают над созданием системы однофотонной связи и способами передачи информации.

Аргоннская национальная лаборатория получила $61 млн от Министерства энергетики США на создание квантового Интернета нового поколения.

Об этом пишет издание Data Center Dynamics.
 
Бюджетные деньги выделили на три проекта, которые должны стать следующими этапами по разработке систем однофотонной связи. Одним из самых амбициозных можно назвать создание протокола, призванного связать несколько существующих квантовых сетей подобно тому, как это реализовано в обычном Интернете.
Нова технологія дозволяє організувати безпеку передачі даних навіть ненадійними каналами зв'язку.

Дослідницька лабораторія компанії Toshiba Europe, розташована в Кембриджі (Великобританія), повідомила про встановлення квантового зв'язку по оптичних волокнах, довжина яких перевищує 600 км. Заявлено, що "цей прорив дозволить організувати безпечну передачу інформації на великі відстані і стане кроком вперед у побудові квантового інтернету майбутнього".

У традиційних комп'ютерах інформація кодується в бітах, представлених як нуль або одиниця. У квантових комп'ютерах вона кодується в квантових бітах (кубітах), які можуть бути нулем, одиницею або і тим, і іншим одночасно. Це різко збільшує їх потенційну обчислювальну потужність, і вони можуть вирішувати проблеми, що виходять за рамки звичайних комп'ютерів.

Але проблема квантових обчислень полягає в тому, що кубіти чутливі до перешкод з навколишнього середовища — навіть крихітні коливання температури або вібрації волокон руйнують дані. Це ускладнює передачу квантової інформації на великі відстані.
Группа исследователей из исследовательской организации QuTech, Нидерланды, объявили о развертывании первой демонстрационной квантовой сети, в которой используется явление квантовой запутанности. В состав этой сети входит сейчас три узла, являющиеся отдельными квантовыми процессорами, и, несмотря на ее простоту, эта сеть является демонстрацией работоспособности ряда новых технологий и ключевых квантовых сетевых протоколов, которые в будущем могут стать основой более совершенных протоколов, на базе которых будет работать так называемый квантовый Интернет.

Отметим, что первые шаги к созданию квантового Интернета были сделаны еще несколько лет назад, когда ученым удалось связать два квантовых устройства и обеспечить возможность прямого обмена информацией между ними. Однако, для создания масштабируемой квантовой сети жизненно важна необходимость возможности передачи квантовой информации через промежуточные узлы, которые являются аналогами маршрутизаторов в нынешнем Интернете.

Явление квантовой запутанности как нельзя лучше подходит для реализации функций квантовой маршрутизации, ведь запутанность можно установить между практически любыми двумя крошечными частицами, которые могут находиться на сколь угодно большом расстоянии. При этом, сохраняется возможность соединения узлов сети через промежуточный узел, что и было продемонстрировано исследователями из QuTech, Делфтского технического университета и организации TNO.
Ученые из Калифорнийского технологического института и Национальной лаборатории имени Ферми сделали нас на один шаг ближе к созданию сверхбезопасного и сверхскоростного квантового Интернета. Эти ученые разработали новую технологию, позволяющую осуществлять квантовую телепортацию, т.е. моментальную передачу квантовой информации по оптоволокну на расстояние в 44 километра, обеспечивая, при этом показатель безошибочной передачи данных на уровне 90 процентов.

Отметим, что для построения будущих квантовых коммуникационных сетей важны оба показателя - и дальность передачи данных, и показатель количества возникающих при этом ошибок. Любое значимое достижение в одной из этих областей приближает тот момент, когда на Земле начнут появляться квантовые коммуникационные системы следующих поколений.

В любой квантовой технологии сейчас используются кубиты, частицы, несущие квантовую информацию. Однако, извлечь эту информацию из кубитов можно лишь разрушив хрупкое квантовое состояние суперпозиции. В качестве примера можно сказать, что несколько запутанных квантовых частиц, находящихся в состоянии суперпозиции можно представить себе как игральные кости, находящиеся еще в стадии вращения.
Физики предложили легко масштабируемый способ распределения информации по квантовым каналам связи между несколькими участниками.
 
Международная команда исследователей на шаг приблизилась к созданию доступного квантового интернета. В отличие от обычной «всемирной паутины», эта технология абсолютно безопасна и защищена от кибератак. Работа опубликована в журнале Science Advances.
Япония начала работу над глобальным сервисом квантового распределения ключей. В рамках проекта до 2024 года планируется построить сеть, включающую более 100 квантовых криптографических устройств и 10000 пользователей по всему миру, пишет The Register. Также будут разработаны четыре технологии:
  • Технология квантовой связи (Quantum Communications Link Technology), реализующая высокоскоростное, магистральное, высокодоступное соединение в квантовых криптографических сетях связи;
  • Технология доверенных узлов (Trusted Node Technology), обеспечивающая надежность и защиту от взлома систем управления криптографическими ключами, а также повышающая конфиденциальность, целостность и доступность квантовых криптографических коммуникаций;
  • Технология квантового реле (Quantum Relay Technology), расширяющая расстояния и защищающая реле криптографических ключей на земле;
  • Технология построения и эксплуатации глобальных сетей, управляющая и контролирующая глобальные и крупномасштабные квантовые криптографические сети связи.
Впервые явление квантовой запутанности было продемонстрировано при помощи крошечного наноспутника CubeSat на околоземной орбите

Исследователям из Национального университета Сингапура удалось успешно продемонстрировать явление квантовой запутанности, созданное при помощи миниатюрного оборудования, размещенного на борту крошечного наноспутника стандарта CubeSat, двигающегося по кольцевой околоземной орбите. Устройство, размещенное внутри наноспутника, способно вырабатывать пары запутанных (связанных на квантовом уровне) фотонов, которые в будущем могут стать основой более быстрого и безопасного "квантового Интернета".
 
Команда исследователей из Китая, Сингапура и Великобритании смогла с помощью спутника «Мо-Цзы» объединить города Наньшань и Дэлинха самой длинной квантовой линией связи, защищенной от взлома.

«Нам удалось осуществить квантовый обмен ключами между двумя наземными станциями на расстоянии 1120 км. Мы повысили эффективность передачи запутанных фотонов примерно в четыре раза и достигли скорости в 0,12 бит в секунду», – пояснили эксперты.

Некоторые проблемы современных систем квантовой связи связаны с тем, что свет при движении через оптоволокно постепенно ослабевает, и в связи с этим расстояние между узлами квантовых сетей в настоящее время составляет всего несколько сотен километров.

Данную проблему исследователи пытаются решить двумя способами: с помощью так называемых повторителей квантовых сигналов, которые могут считывать поступающие в них квантовые сигналы, усиливать их и отправлять адресату, не нарушая целостности данных, или путем повышения дальности передачи квантовой информации через спутники связи.
Ученые из университета Нового Южного Уэльса (University of New South Wales, UNSW) создали новый тип квантового логического элемента, состоящего из двух кубитов, реализованных в виде отдельных атомов, размещенных на поверхности кремниевой подложки. Такой двух-кубитовый элемент представляет собой базовый компонент для создания более сложного квантового компьютера. Более того, элемент, созданный учеными UNSW, выполняет одну операцию приблизительно за 0.8 наносекунды, что в 200 раз быстрее, чем это могли делать любые другие логические элементы, основанные на двух спиновых кубитах, заключенных в кремнии.

Для создания квантового логического элемента ученые использовали наконечник сканирующего туннельного микроскопа, при помощи которого атомы фосфора были помещены внутрь выемок на поверхности кремния. И самой большой проблемой, с которой столкнулись ученые на этом этапе, стало соблюдение точного расстояния между атомами-кубитами, что, в свою очередь, обеспечило максимальное быстродействие квантового логического элемента. При этом, разработанный учеными способ манипулирования атомами обеспечил суб-нанометровую точность выполнения операций с отдельными атомами.